Making Inferences With Indirect
Measurements

Todd Graves and Michael Hamada
Statistical Sciences
Los Alamos National Laboratory

03.14.04 1800
Abstract

This paper considers the characterization of the distribution of part qual-
ity for parts produced by a manufacturing process when only indirect qual-
ity measurements are available. The proposed method uses the relationship
between the indirect and direct measurements which is not completely deter-
ministic as well as a key property of the assumed distribution. The proposed
method provides tolerance bounds of the part quality distribution. A diag-
nostic is also proposed to assess the validity of the distribution assumed. The
proposed method and diagnostic are demonstrated with an illustrative data
set.
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1 Introduction

This paper is concerned with the characterization of the quality of parts pro-
duced by a manufacturing process in which only indirect measurements of a

quality characteristic are available. Consider a spherical vessel which has an



inner liner. Both the vessel and its liner have defined equators which should
coincide. Due to manufacturing variation, however, the equators do not co-
incide so that what is of interest is characterizing the maximum distances
between the equators for the vessels being produced by the manufacturing
process. Since maximum distances cannot be negative, we assume that the
maximum distances (z’s) follow an exponential distribution whose cumula-

tive distribution function is

G(z) = 1 — exp(—a/n) (1)

for > 0, where p is the mean maximum distance.

Ideally, a distance measurement should be taken at every degree around
the vessel’s equator to determine the maximum distance. However, due to
cost constraints, only one distance measurement is taken at a random angle
around the vessel’s equator for a sample of vessels. See Figure 1 which
displays the liner equator (inner dark line) and the vessel equator (outer
light line) that do not coincide. The 0 and 180 degree positions are where
the two equators cross. In Figure 1, the maximum distance between the two
equators is denoted by x and the distance at randomly chosen 6 degrees is
denoted by y.

In order to make progress, there needs to be some relationship between the
indirect and direct measurements. In this case, we can simply use geometry
which yields

y = | sin(6) . 2)

One way to characterize a distribution is to use tolerance bounds, i.e., sta-

tistical bounds that capture a large specified proportion of the distribution.



Figure 1: Example diagram.

For the vessel example, what is of interest is providing an upper bound on
the maximum vessel-liner distances. Consequently, upper tolerance bounds
T are appropriate which are described as follows: with 8 x 100% confidence,
a x 100% of the population of maximum distances is less than 7' (Hahn and
Meeker, 1991).

In this paper, we demonstrate how such inferences about a population can
be made with indirect measurements. An outline of the paper is as follows.
Section 2 introduces the use of equivariance for the distribution of maximum
distances which is assumed to follow a scale distribution. Section 3 consider
upper tolerance bounds based on five different estimators and compares them.
Section 4 considers diagnostics to be performed on the indirect measurements
for assessing the distribution assumed for the direct measurements. Section

5 illustrates the proposed method with a simulated set of data. Section 6



concludes with a discussion.

2 A Solution Using Equivariance

Let G(-) be the cumulative distribution function of the maximum distances
given in (1). Given a random sample of n vessels, and for vessel 1 = 1, ...,
n, a distance y; measured at a random angle #;, then the problem is to find

a statistic T =T (y1, . . ., y,) which satisfies
Pr{G(T) > a} > B. (3)

We will see shortly the advantage of restricting ourselves to tolerance

bounds 7" that have the property
T(cy1,---,cyn) = T (Y1,---,yn) for ¢ > 0. (4)

This property is called scale equivariance by Lehmann (1991). Denote by
Pr, the probability distribution of the z’s. Then

Pr {G(T)>a} = Pr,{l—exp(=T/p) > a}
= Pr,{T > —plog(l —a)}
= Pr,{T/p>—log(l—a)} (5)
= Pr{Tyi/p, - ya/p) > —log(l — @)}
= Pri{T > —log(l —a)}.

The first three equalities follow from substitution and algebra. The fourth
equality uses the scale equivariance in (4). The last equality uses the fact
that dividing an exponential random variable by its scale parameter results

in a standard exponential random variable, i.e., with py = 1.
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The implication of (5) is that we can now propose a statistic 7* satisfying
(4), perform simulations of z and y using (2) to obtain the 1 — § quantile

t1_p, of its distribution and take 7" to be

T(y1, ..., yn) = —log(l — a)T*(y1,. - ,yn)/t’{fﬁ’n (6)

which satisfies (3).

The quantity 74, is easily obtained as follows:
1. Perform steps (a)-(c) n times to obtain simulated yi, ..., yn

(a) draw z from a standard exponential distribution
(b) draw 6 from a uniform distribution on 0 to 360 degrees

(c) compute y from (2).
2. Compute T* from yy, ..., Yp-

3. Generate a large number of 7™’s, say N, and estimate ¢]_z, by the
(1 — B)Nth largest T*. The notation ¢] 4, indicates that this quan-
tity depends on n, the sample size of the actual data; consequently, a

different simulation has to be done for each different n as needed.

Then, for the actual data ¥;,...,y,, T can be evaluated using (6) to

obtain a valid upper tolerance bound regardless of the value of u.

3 Comparing Some Estimators

Next, we consider several choices for T and compare them. An obvious first

choice for 7™ is the sample mean of the y’s. However, intuition suggests that
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larger y’s are more informative about the value of p than smaller values;
consequently, the sample mean may not be the best statistic to use. We

considered the following five estimators:

o Tr(y) =y=n""Yr, v, the sample mean;

e T5(y) = max] , y;, the maximum of the data;

o T35 (y) = X1 W)/ Xiz @, a weighted average of the order statistics of
the y’s, weighted by their ranks;

o T;(y) = X0, i*yu)/ i 1%, a weighted average of the order statistics
of the y’s, weighted by the squares of their ranks;

o TX(y) =/n 13", y2, the square root of the average of the squares of

the data.

The last four estimators weight larger y;’s more in estimating p.

In order to understand the performance of these estimators, we conducted
a simulation study for « = 8 = 0.9 and n = 10, i.e., for samples of size 10
and 90% upper bounds with 90% confidence. For the study, we simulated
10000 samples of (yi,...,¥y,) to estimate the distribution of T (yi, ..., yn)
fori=1,...,5. The T} upper tolerance bounds are based on their respective
T?’s. The simulation results are presented in Table 1, whose first two columns
give the ¢7_5 and the expected value of T', respectively. The actual 90%
percentile of the exponential distribution with mean one is —log(1 — 0.9) =
2.303, so that the tolerance upper bounds tend to be almost twice as large.
The remaining columns provide pairwise comparisons of the candidate upper

bounds: the 0.632 in the 7} row and 75 column means that the sample mean



based T; generates a smaller upper tolerance bound 63% of the time than
does the sample maximum based T5. Somewhat surprisingly, 77, the sample
mean based upper bound, is the best even for sample sizes as small as ten.
Also, Ty, Ty, and Ty are competitive with 7. The sample maximum based

T, is not a serious competitor.

Table 1: A Comparison of Five Tolerance Bounds (oo = 5 = 0.9 and n = 10)

i | BT | <Th <Tp, <T3 <T, <Ts

T) | 0.346 4.21 0.632 0.526 0.567 0.535
T, | 1.003 4.89 | 0.367 0.351 0.352 0.319
75 | 0.506 4.23 10474 0.649 0.617 0.533
Ty | 0.613 4.2910.433 0.648 0.383 0.444

15 | 0.484 43710465 0.681 0.467 0.556

Next, consider calculating an upper tolerance bounds using the distance
data given in Table 2. Take a = 0.95 and § = 0.90. That is, we want upper
bounds on 90% of the population with 95% confidence. Here we use the
statistic based on the sample mean, 77, for sample size n = 30. Based on
100,000 simulations, the th—p.n) for 5 = 0.95 is 0.4255. The sample mean ¥
for the data in Table 2 is 0.0420. Using (6), we calculate the desired upper
bound as 0.227.



4 Model Checking

An important analysis step is to assess whether the assumed exponential dis-
tribution is reasonable for the data. A simple graphical method, a quantile-
quantile or Q-Q plot, can be used as follows. The probability density function

of the indirect measurement y given p can be derived and has the form:

) == [~ w7t expl-a/m)a? — ) e 7

For sample size n, the (i — 0.5)/n, ¢ = 1,...,n quantiles can be calculated
using (7) to find the quantiles for which the cumulative distribution function
under the standard exponential distribution equals (i — 0.5)/n,i=1,...,n.
More simply, the quantiles can be obtained by simulating a large number of
y’s as described in the previous section and using the empirical quantiles.
Then the quantile-quantile (QQ) plot is generated by plotting the ordered
data (1), ..., ¥Yw) against the corresponding quantiles; they should plot as a
straight line if the exponential distribution assumption holds.

For illustration, consider the case when n = 30. Table 2 presents the
30 quantiles under the exponential distribution that were generated from
100,000 simulations as described above. Table 2 also displays sorted distance
data simulated from an exponential distribution with p = 0.05. The QQ plot
of these data is shown in Figure 2 which shows the characteristic straight line.
To demonstrate that the QQ plot can detect a non-exponential distribution,
Figure 3 displays the QQ plot for a sample of size 30 from a Gamma(5, 100)
distribution; this QQ plot has a bulge in the middle.



Table 2: Distance Data and Quantiles Based on Exponential Distribution

(n = 30)

Index | Data Quantile | Index | Data Quantile
0.002 0.004 16 | 0.024 0.387

—_

2 10.003 0.015 171 0.030 0.435
31 0.004 0.028 18 |1 0.036 0.488
41 0.004 0.043 19 | 0.042 0.549
5 | 0.006 0.059 20 | 0.042 0.614
6 | 0.008 0.078 21 | 0.044 0.686
7 1 0.009 0.098 22 1 0.055 0.768
8 1 0.009 0.121 23 | 0.059 0.861
91 0.011 0.144 24 | 0.066 0.973
10 | 0.016 0.171 25| 0.072 1.108
11 | 0.017 0.199 26 | 0.073 1.271
12| 0.020 0.230 271 0.101 1.475
13 ] 0.020 0.265 28 | 0.129 1.755
14 | 0.022 0.302 29 | 0.145 2.180
15 ] 0.022 0.344 30| 0.171 3.111
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Figure 2: QQ plot when distance data are exponentially distributed (n = 30).
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Figure 3: QQ plot when distance data are gamma distributed (n = 30).
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5 Towards a Generalization

A reviewer suggested that the solution proposed in this paper might be ap-
plied more generally. That is, there is a characteristic of interest x whose
cumulative distribution function is G(z|u), where p is an unknown param-
eter. The characteristic z is measured with error; the measurement y is
related to x by y = f(x,0), where 6 is random but whose distribution is
known. Then for data yi,...,¥y,, one needs to find a statistic T(y1, ..., ¥n)
that satisfies (3) to obtain an upper tolerance bound. The challenge for a
particular problem is to find such a statistic which provides a valid upper
tolerance bound no matter what the value of p.

For the situation considered in this paper, there were a number of factors
that made this possible. The error being multiplicative and the unknown
1 being a scale parameter allowed estimators with the scale equivariance
property to be used. This was key to requiring a single simulation to obtain
the value t7_4 , which provided valid upper tolerance bounds no matter what
the value of y for a given sample size n. Consequently, there may be situations
in which the form of the error and the form of the distribution of interest
may not allow the generalization of the solution proposed in this paper to be
applied.

One such situation, however, that does apply is when the characteristic

2

z is normally distributed with unknown mean p, but known variance o

and y is the measured x with additive error which is normally distributed
with mean zero and known variance ¢2. Then estimators with the location
equivariance property ((T(y1+¢,...,yn+¢) =T (y1,...,yn) +¢) can be used

to obtain valid upper tolerance bounds.
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6 Discussion

In this paper, we showed how indirect measurements in a particular situation
could be used to characterize the distribution of the direct measurements for
a quality characteristic of interest. We considered how the solution proposed
in this paper might be applied more generally. More research on this topic
is needed.

Even for the situation considered in this paper, there are a number of
issues that could be explored. How large should the sample size n be? If
more than one measurement per vessel is taken, how should these data be
analyzed? What is the benefit of taking more than one measurement per
vessel versus taking one measurement on more vessels? These issues will be

considered in a future paper.
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